

Rendering Provided by BCJ

Christopher Graziani Advisor: Craig Dubler **Construction Management**

Penn State Health and Human Development Building

State College, PA

Rendering Provided by BCJ

Existing Building Structure

Previous View From College Avenue

Rendering Provided by BCJ

Multi-Use Spaces

Project Cost: \$59 Million

Rendering Provided by BCJ

Dates of Construction: February 2013 – June 2015

Occupancy Type: Office/ Lab/ Classroom

Penn State Health and Human Development Building

State College, PA

Rendering Provided by BCJ

Rendering Provided by BCJ

Demolition Phase

Previous View From College Avenue

Rendering Provided by BCJ

Project Cost: \$59 Million

Rendering Provided by BCJ

Dates of Construction: February 2013 – June 2015

Multi-Use Spaces

Occupancy Type: Office/ Lab/ Classroom

Penn State Health and Human Development Building

State College, PA

New Construction

Future View From

College Avenue

Previous View From College Avenue

Rendering Provided by BCJ

Multi-Use Spaces

Rendering Provided by BCJ

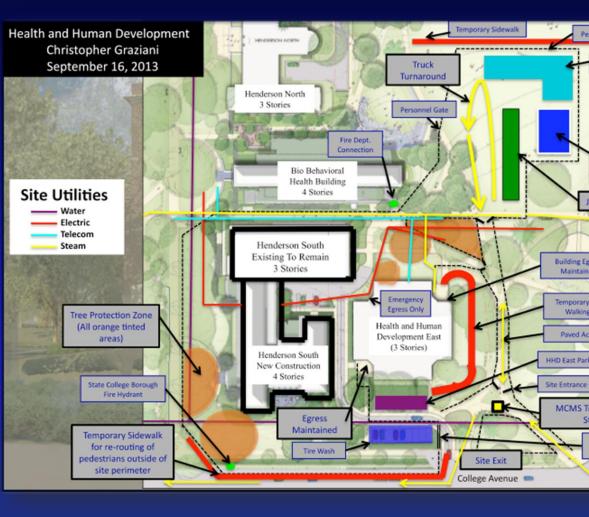
Project Cost: \$59 Million

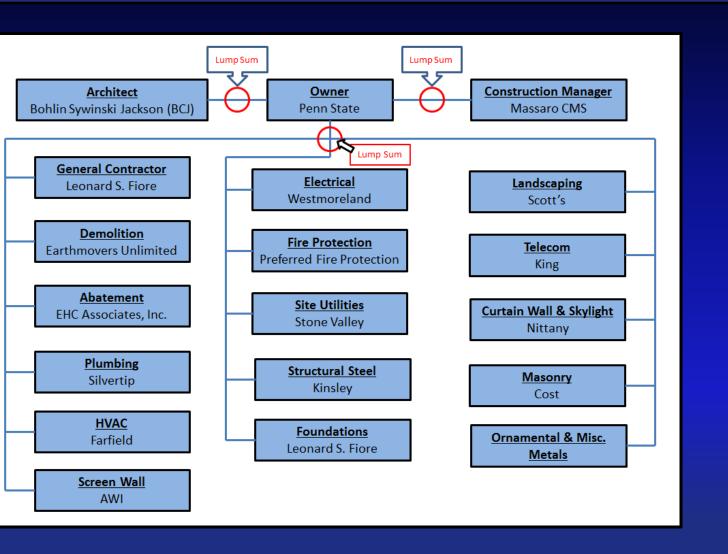
Dates of Construction: February 2013 – June 2015

Occupancy Type: Office/ Lab/ Classroom

Rendering Provided by BCJ

Project Overview





Introduction

- A. Project Overview
- B. Project Features
- II. Analysis 1 Stair Tower Redesign
 - A. Problem Identification & Overview
 - B. Structural Breadth
 - C. Cost and Schedule Impact Analysis
- III. Analysis 2 Return Air Plenum
 - A. System Research
 - **B.** Cost and Schedule Comparisons
 - C. Mechanical Breadth and Conclusions
- IV. Analysis 3 Alternative Excavation Options
 - A. Blasting vs. Rock Hammering
 - **B. Cost and Schedule Comparisons**
- C. Research and Conclusions
- V. Conclusion & Recommendations
- VI. Acknowledgements

Project Features

Introduction

- A. Project Overview
- B. Project Features
- II. Analysis 1 Stair Tower Redesign
 - A. Problem Identification & Overview
 - B. Structural Breadth
 - C. Cost and Schedule Impact Analysis
- III. Analysis 2 Return Air Plenum
 - A. System Research
 - **B.** Cost and Schedule Comparisons
 - C. Mechanical Breadth and Conclusions
- IV. Analysis 3 Alternative Excavation Options
 - A. Blasting vs. Rock Hammering
 - **B.** Cost and Schedule Comparisons
 - C. Research and Conclusions
- V. Conclusion & Recommendations
- VI. Acknowledgements

Project Features

Building Renovation

Large Atrium Space

Architectural Screen Wall

Pursuing LEED Certified

Soil Nail Wall

Architectural Screen Wall In Atrium

Soil Nail Wall Installation

Analysis 1 – Stair Tower Redesign

- Introduction
- A. Project Overview
- B. Project Features
- II. Analysis 1 Stair Tower Redesign
 - A. Problem Identification & Overview
 - B. Structural Breadth
 - C. Cost and Schedule Impact Analysis
- III. Analysis 2 Return Air Plenum
 - A. System Research
 - **B.** Cost and Schedule Comparisons
 - C. Mechanical Breadth and Conclusions
- IV. Analysis 3 Alternative Excavation Options
 - A. Blasting vs. Rock Hammering
 - B. Cost and Schedule Comparisons
 - C. Research and Conclusions
- V. Conclusion & Recommendations
- VI. Acknowledgements

Problem Statement:

Concrete stair tower acting as a shear wall caused significant delays to the project schedule and provided a low quality product at project turnover

Problem Identification & Overview

Tower Twisting and

Interior Finish

Introduction

- A. Project Overview
- B. Project Features
- Analysis 1 Stair Tower Redesign
 - A. Problem Identification & Overview
 - B. Structural Breadth
 - C. Cost and Schedule Impact Analysis
- III. Analysis 2 Return Air Plenum
 - A. System Research
 - **B.** Cost and Schedule Comparisons
 - C. Mechanical Breadth and Conclusions
- IV. Analysis 3 Alternative Excavation Options
 - A. Blasting vs. Rock Hammering
 - **B.** Cost and Schedule Comparisons
 - C. Research and Conclusions
- V. Conclusion & Recommendations
- VI. Acknowledgements

Worker Safety

Higher Quality of Finish

Improved Coordination of Trades

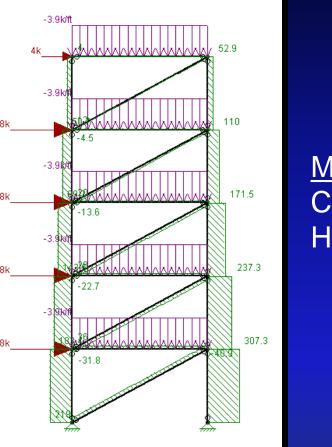
Structural Breadth

Introduction

- A. Project Overview
- B. Project Features
- II. Analysis 1 Stair Tower Redesign
 - A. Problem Identification & Overview
 - B. Structural Breadth
 - C. Cost and Schedule Impact Analysis
- III. Analysis 2 Return Air Plenum
 - A. System Research
 - B. Cost and Schedule Comparisons
 - C. Mechanical Breadth and Conclusions
- IV. Analysis 3 Alternative Excavation Options
 - A. Blasting vs. Rock Hammering
 - B. Cost and Schedule Comparisons
 - C. Research and Conclusions
- V. Conclusion & Recommendations
- VI. Acknowledgements

Purpose:

Change the concrete stair tower to a steel braced frame with drywall infill


Parameters

Wind Loads

RISA Program for Calculations

Fireproofing

Wall Partition Fill

Maximum Axial Forces
Column = 307.3 Kips
Horizontal Beams = 36 Kips

Steel Design Summary		
Size	Quantity	Length (ft)
SS 4-1/2 x 4-1/2 x 3/8	10	19.8
SS 6 x 6 x 1/4	10	29.5
/14x90	8	28
/14x90	4	14
/10x30	10	26
/10x17	10	14

RISA Program Showing Axial Loads

Cost and Schedule Impact Analysis

I. Introduction

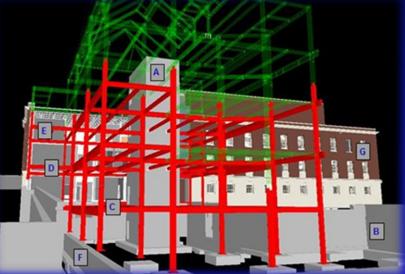
- A. Project Overview
- B. Project Features
- II. Analysis 1 Stair Tower Redesign
 - A. Problem Identification & Overview
 - B. Structural Breadth
 - C. Cost and Schedule Impact Analysis
- III. Analysis 2 Return Air Plenum
 - A. System Research
 - **B.** Cost and Schedule Comparisons
 - C. Mechanical Breadth and Conclusions
- IV. Analysis 3 Alternative Excavation Options
 - A. Blasting vs. Rock Hammering
 - B. Cost and Schedule Comparisons
- C. Research and Conclusions
- V. Conclusion & Recommendations
- VI. Acknowledgements

Interior Finish of Concrete Stair Tower

Stud Framing Infill of Steel Braced
Frame System

Summary for Current Design Material \$ 147,031.50 Equipment \$ 40,750.00 Manpower \$ 57,029.20 \$ 244,810.70 Schedule 5 weeks (25 Days)

Summary for No	ew	Design	
ltem		Cost	
Steel	\$	75,955.44	
Fireproofing	\$	7,939.27	
Fill (Framed Drywall)	\$	39,517.70	
	\$	123,412.41	
Schedule Su	mn	nary	
Item	Du	ration (Days)	
Steel Members		1.16	
Fireproofing		4.34	
6" GWB Partition		20	


Cost Savings from Steel Design

- Current Design = \$244,180.70
- Proposed Design = \$123,412.41
- Savings = \$121,398.29

Schedule Savings from Steel Design

- Current Design = 25 Days
- Proposed Design = 25 Days
- Savings = 0 Total Days
- **Critical Time Savings = 24 Days**

Stair Tower Construction Compared to BIM Model

Analysis 2 – Return Air Plenum

- Introduction
- A. Project Overview
- B. Project Features
- II. Analysis 1 Stair Tower Redesign
 - A. Problem Identification & Overview
 - B. Structural Breadth
 - C. Cost and Schedule Impact Analysis
- II. Analysis 2 Return Air Plenum
- A. System Research
- B. Cost and Schedule Comparisons
- C. Mechanical Breadth and Conclusions
- IV. Analysis 3 Alternative Excavation Options
 - A. Blasting vs. Rock Hammering
 - **B.** Cost and Schedule Comparisons
 - C. Research and Conclusions
- V. Conclusion & Recommendations
- VI. Acknowledgements

Problem Statement:

Tight ceiling spaces cause added schedule time and heavy coordination of trades is required

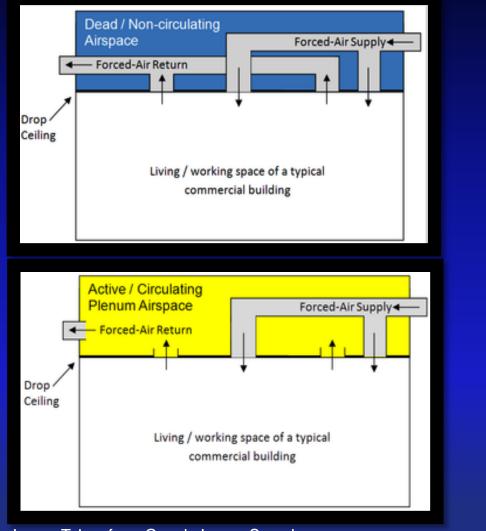
System Research

Introduction

- A. Project Overview
- B. Project Features
- II. Analysis 1 Stair Tower Redesign
 - A. Problem Identification & Overview
 - B. Structural Breadth
 - C. Cost and Schedule Impact Analysis
- III. Analysis 2 Return Air Plenum
 - A. System Research
 - **B.** Cost and Schedule Comparisons
 - C. Mechanical Breadth and Conclusions
- IV. Analysis 3 Alternative Excavation Options
 - A. Blasting vs. Rock Hammering
 - **B.** Cost and Schedule Comparisons
- C. Research and Conclusions
- V. Conclusion & Recommendations
- VI. Acknowledgements

Purpose:

Utilize a Return Air Plenum System as Opposed to the Return Air Ductwork


Parameters

Return Air Ductwork Removal

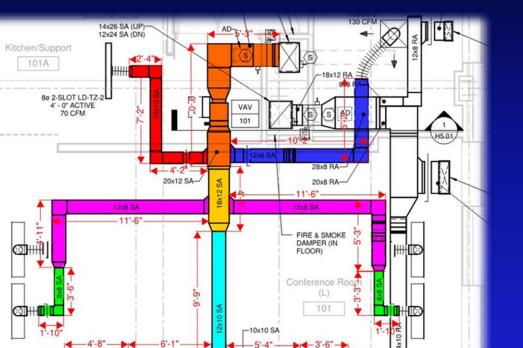
Fire Damper Requirements

Plenum Rating Materials

System Requirements

BIM Model Showing Ceiling Space Systems

Cost and Schedule Comparisons



Introduction

- A. Project Overview
- **B.** Project Features
- Analysis 1 Stair Tower Redesign
 - A. Problem Identification & Overview
 - B. Structural Breadth
 - C. Cost and Schedule Impact Analysis
- Analysis 2 Return Air Plenum
 - A. System Research
 - B. Cost and Schedule Comparisons
 - C. Mechanical Breadth and Conclusions
- IV. Analysis 3 Alternative Excavation Options
 - A. Blasting vs. Rock Hammering
 - **B.** Cost and Schedule Comparisons
 - C. Research and Conclusions
- V. Conclusion & Recommendations
- VI. Acknowledgements

4'-0' ACTIVE 70 CFM 4'-2' 20x12 SA- 20	101 102 H5.01 H5.0
12x8 SA 111.6"	FIRE & SMOKE OF DAMPER (IN FLOOR) Conference Rooth
9	10x10 SA 11-1000 X 3'-6" 3'-6" 3 8x8 SA 0 0
	14x10 RA

Supply Air Takeoff for Area Analyzed	
--------------------------------------	--

Current Design			C
Item		Cost	<u>U</u>
ctwork	\$	2,085.70	•
e Dampers (1)	\$	350.00	
	\$	2,435.70	•
			•
PLENUM DESIGN			
Item	Ad	ditional Cost	
ctwork Insulation Wrap	\$	948.10	

Sav	ings in Area	SF of Area Savings/SI		Savings/SF	
\$	1,487.61		1250	\$	1.19
Total A	rea of Building		Savings/SF	Т	otal Savings

Cost Savings from Plenum Design

- Current Design = \$2,435.70
- Proposed Design = \$948.10
- **Savings = \$1,487.61**

Cost Savings from Plenum Design

- Savings per SF of Area = \$1.19
- Total Area of Building = 150,000
- Total Potential Savings = \$178,512.94

Schedule Information For Current Design			
Activity	Duration		
fabrication	2 hours		
se and Hang	195 minutes		
tall Piece that Penetrates Wall	30 minutes		
al Duct Flange Between Pieces	13 minutes		
ulate Ductwork	63 minutes		
tall Fire/Smoke Damper	10 minutes		
Total	7 hours		

Insulation Wrap = 1 Hour

Savings in Area (Hours)	SF of Area	Savings/SF
6	1250	0.0048
Total Area of Building	Savings/SF	Total Savings
150000	0.0048	720.00

Mechanical Breadth and Conclusions

Friction

(in. wg/100')

0.0245

Galvanized

. Introduction

- A. Project Overview
- B. Project Features
- II. Analysis 1 Stair Tower Redesign
 - A. Problem Identification & Overview
 - B. Structural Breadth
 - C. Cost and Schedule Impact Analysis
- III. Analysis 2 Return Air Plenum
 - A. System Research
 - B. Cost and Schedule Comparisons
 - C. Mechanical Breadth and Conclusions
- IV. Analysis 3 Alternative Excavation Options
 - A. Blasting vs. Rock Hammering
 - B. Cost and Schedule Comparisons
 - C. Research and Conclusions
- V. Conclusion & Recommendations
- VI. Acknowledgements

690 to 780

	ACF 8	
Level	Supply Air Provided (CFM)	Return Air (CFM)
3	2700	3000
3.1	1440	1440
3.2	740	740
3.3	960	960
3.4	1390	1390
	7230	7530

m)

(CFM)

Rect, most square (1:1 ratio) (in.)

Rect, flattest (4:1 ratio) (in.)

Oval, balanced (2:1 ratio) (in.)

Oval, flattest (4:1 ratio) (in.)

Oval, enter one side (in.)

Oval, duct size (in.)

Duct Sizing Increment

Air Temperature (deg. F)

Absolute Roughness Factor (ε)

Duct Material

Altitude (ft.) Air Density (pcf)

Rect, enter one side (in.)

Rect, duct size (in.)

Round (in.)

Duct Calculator Results Provided by KLING STUBBINS

- Amount of Space in the Plenum = 31-3/4"
- Most Square Piece Necessary = 20"x20"
- Flattest Piece Necessary = 34"x12"

Analysis Summary

Schedule Time	6 hours in Area
Cost	\$1,497.61
Coordination	

NC-40 to NC-45 575 to 650

Analysis 3 – Alternative Excavation Options

- Introduction
- A. Project Overview
- B. Project Features
- II. Analysis 1 Stair Tower Redesign
 - A. Problem Identification & Overview
 - B. Structural Breadth
 - C. Cost and Schedule Impact Analysis
- III. Analysis 2 Return Air Plenum
 - A. System Research
 - B. Cost and Schedule Comparisons
 - C. Mechanical Breadth and Conclusions
- IV. Analysis 3 Alternative Excavation Options
 - A. Blasting vs. Rock Hammering
 - **B.** Cost and Schedule Comparisons
 - C. Research and Conclusions
- V. Conclusion & Recommendations
- VI. Acknowledgements

Problem Statement:

Soil is made of dolomite rock so rock excavation techniques are required

Blasting vs. Rock Hammering

Introduction

- A. Project Overview
- B. Project Features
- II. Analysis 1 Stair Tower Redesign
 - A. Problem Identification & Overview
 - B. Structural Breadth
 - C. Cost and Schedule Impact Analysis
- III. Analysis 2 Return Air Plenum
 - A. System Research
 - **B.** Cost and Schedule Comparisons
 - C. Mechanical Breadth and Conclusions
- IV. Analysis 3 Alternative Excavation Options
 - A. Blasting vs. Rock Hammering
 - B. Cost and Schedule Comparisons
 - C. Research and Conclusions
- V. Conclusion & Recommendations
- VI. Acknowledgements

Purpose:

Compare the Cost and Schedule Implications of Rock Excavation Techniques and Research Additional Tactics

Parameters

Personnel Requirements

Equipment Necessary

Soil Classification

Noise Levels

Safety

Image Taken from Google Image Search

Image Taken from Google Image Search

Traditional Rock
Hammering

Blasting vs. Rock Hammering

Introduction

- A. Project Overview
- B. Project Features
- II. Analysis 1 Stair Tower Redesign
 - A. Problem Identification & Overview
 - B. Structural Breadth
 - C. Cost and Schedule Impact Analysis
- III. Analysis 2 Return Air Plenum
 - A. System Research
 - **B.** Cost and Schedule Comparisons
 - C. Mechanical Breadth and Conclusions
- IV. Analysis 3 Alternative Excavation Options
 - A. Blasting vs. Rock Hammering
 - B. Cost and Schedule Comparisons
 - C. Research and Conclusions
- V. Conclusion & Recommendations
- VI. Acknowledgements

Purpose:

Compare the Cost and Schedule Implications of Rock Excavation Techniques and Research Additional Tactics

Parameters

Personnel Requirements

Equipment Necessary

Soil Classification

Noise Levels

Safety

Traditional Rock
Hammering

I. Introduction

- A. Project Overview
- B. Project Features
- II. Analysis 1 Stair Tower Redesign
 - A. Problem Identification & Overview
 - B. Structural Breadth
 - C. Cost and Schedule Impact Analysis
- III. Analysis 2 Return Air Plenum
 - A. System Research
 - **B.** Cost and Schedule Comparisons
 - C. Mechanical Breadth and Conclusions
- V. Analysis 3 Alternative Excavation Options
 - A. Blasting vs. Rock Hammering
 - B. Cost and Schedule Comparisons
 - C. Research and Conclusions
- V. Conclusion & Recommendations
- VI. Acknowledgements

Traditional Excavation Takeoff			
Unrippable S			
Cost/CY	Cost		
\$ 50.00	\$186,825.00		
Rippable So	oil		
Cost/Cy	Cost		
\$ 25.00	\$ 93,412.50		
otal	\$280,237.50		
Additional Co	osts		
General Conditions	\$ 5,000.00		
ubtotal	\$285,237.50		
horing Requirements	\$400,000.00		
otal	\$685,237.50		

Blasting Totals		
Blasting Estimate	\$ 95,000.00	
Manpower Takeoffs	\$ 74,954.96	
xcavation	\$186,825.00	
	\$356,779.96	

Cost Savings from Blasting

\$328,457.54

Blasting Schedule Time

- Blasting = 14 Days
- Excavation = 8 Days
- Total Time = 22 Days

<u>Traditional Schedule Time</u>

- Unrippable Soil = 12 Days
- Rippable Soil = 15 Days
- Total Time = 27 Days

Time Savings From Blasting
5 Days

Research and Conclusions

Image Taken from Google Image Search

- Introduction
- A. Project Overview
- B. Project Features
- Analysis 1 Stair Tower Redesign
 - A. Problem Identification & Overview
 - B. Structural Breadth
 - C. Cost and Schedule Impact Analysis
- III. Analysis 2 Return Air Plenum
 - A. System Research
 - **B.** Cost and Schedule Comparisons
 - C. Mechanical Breadth and Conclusions
- V. Analysis 3 Alternative Excavation Options
 - A. Blasting vs. Rock Hammering
 - **B.** Cost and Schedule Comparisons
 - C. Research and Conclusions
- V. Conclusion & Recommendations
- VI. Acknowledgements

Safety

Noise

Image Taken from Google Image Search

Royex Technology

- Minimal Fly Rock
- Minimal Rock Vibrations
- Lower Noise Levels
- Faster
- Minimal Personnel Required
- Safer to Transport
- Cost Savings

Top-Down Cutting Technology

Material Recycled for Backfill

Image Taken from Google Image Search

Conclusions & Recommendations

I. Introduction

- A. Project Overview
- B. Project Features
- II. Analysis 1 Stair Tower Redesign
 - A. Problem Identification & Overview
 - B. Structural Breadth
 - C. Cost and Schedule Impact Analysis
- III. Analysis 2 Return Air Plenum
 - A. System Research
 - B. Cost and Schedule Comparisons
 - C. Mechanical Breadth and Conclusions
- IV. Analysis 3 Alternative Excavation Options
 - A. Blasting vs. Rock Hammering
 - B. Cost and Schedule Comparisons
 - C. Research and Conclusions
- V. Conclusion & Recommendations
- VI. Acknowledgements

Analysis 1 – Stair Tower Redesign

- Potential cost savings of \$121,398.29
- Critical schedule savings of 24 days
- Improved quality and safety
- More logical to use steel braced frame on future projects

Analysis 2 – Return Air Plenum

- Potential cost savings of \$1,497.61 in area
- Schedule savings of 6 hours in area
- Reduce amount of coordination necessary in ceiling space
- Industry standard to plenum rate materials → return air plenum is more logical

Analysis 3 – Alternative Excavation Options

- Blasting was cheaper due to lack of shoring necessary
- Blasting saved an estimated 5 days of schedule time
- Traditional rock hammering is a major noise disruption
- If the schedule allows, blasting is preferred

Acknowledgements

Introduction

- A. Project Overview
- B. Project Features
- II. Analysis 1 Stair Tower Redesign
 - A. Problem Identification & Overview
 - B. Structural Breadth
 - C. Cost and Schedule Impact Analysis
- III. Analysis 2 Return Air Plenum
 - A. System Research
 - **B.** Cost and Schedule Comparisons
 - C. Mechanical Breadth and Conclusions
- IV. Analysis 3 Alternative Excavation Options
 - A. Blasting vs. Rock Hammering
 - B. Cost and Schedule Comparisons
 - C. Research and Conclusions
- V. Conclusion & Recommendations
- /I. Acknowledgements

Academic Acknowledgements

Penn State Architectural Engineering Faculty
Craig Dubler – CM Advisor
Moses Ling – Mechanical Advisor

Industrial Acknowledgements

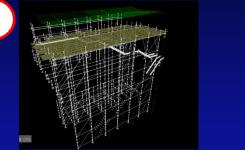
Bohlin Cywinski Jackson
Architecture Planning Interior Design

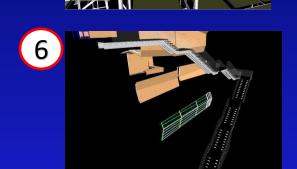
Special Thanks

The Massaro Project Team
Tim Jones – Massaro Project Manager
Kevin Nestor – Massaro Senior Project Manager
Keith Smith – Massaro Site Manager
Dan Kiefer – Massaro Senior Estimator
David Walenga – Ruby + Associates
Geoff Measel – G.E.M. Construction
Family and Friends

Rendering Provided by BCJ

Questions?





Analysis 4 – Re-Sequencing of Atrium Systems

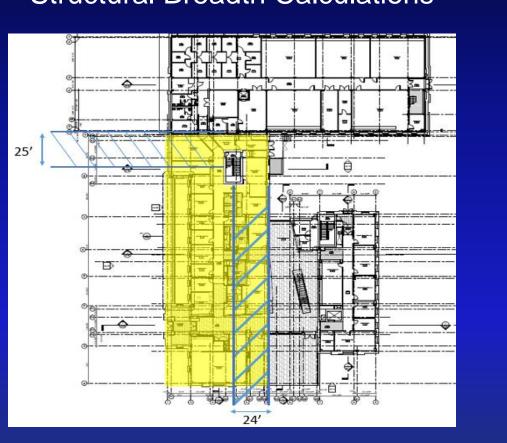
Current Stair Tower Design

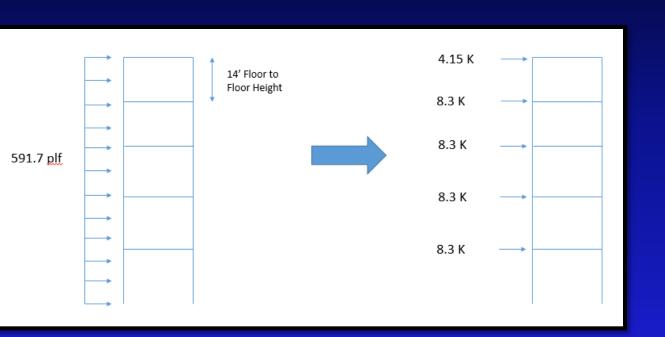
	STAIR A: LEVEL	1 - TOP OF	STRUCTUR	E			Unit	\$ per unit	Total \$
				12	"THICK	4,690	SF		
	CONCRETE - B	UY				182	CY	125.00	\$22,799
	REBAR			50	#/CY	9,119	LBS	2.00	\$18,239
	FORMING					9,380	SF	10.00	\$93,800
	RUBBING					9,380	SF	1.30	\$12,194
	Stair A			- COST PE	RCUBIC	YARD	\$806	/CY	
	Stair A			- COST PE	RSQUAF	RE FOOT	\$31	/SF	
CIP WALL	@ STAIR A			-SUBTOTA	L	\$147,032			

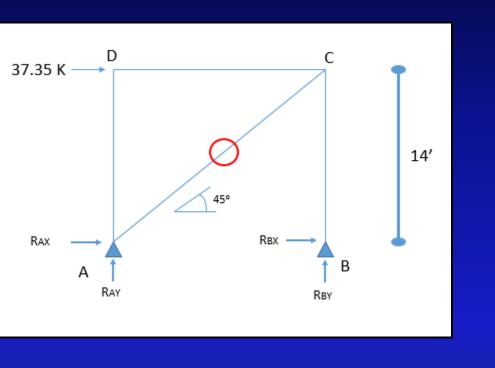
		Manpower Takeoff for Cur	rent Design			
Type of laborer	Number of Workers	Hours Per Worker Per Level	# of Levels	Total Number of Hours	Cost/Hour	Total Cost
Iron Workers	2	12	5	120	\$ 49.63	\$ 5,955.60
Carpenter	3	40	5	600	\$ 38.60	\$ 23,160.00
Laborer	3	40	5	600	\$ 29.14	\$ 17,484.00
Crane Operator	1	40	5	200	\$ 43.54	\$ 8,708.00
Pump Operator	1	8	5	40	\$ 43.04	\$ 1,721.60
						\$ 57,029.20

Equipment Takeoff for Current Design												
Type of Equipment Days/Level # of Levels Total Number of Days Cost/Day Total Cost												
Crane	5	5	25	\$	1,250.00	\$	31,250.00					
Lift	5	5	25	\$	180.00	\$	4,500.00					
Pump Truck	Pump Truck 1 5 5 \$ 1,000.00											
	\$	40,750.00										

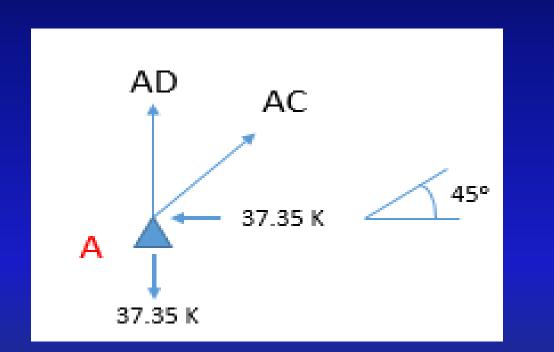
Summary for Cu	Summary for Current Design										
Material	\$	147,031.50									
Equipment	\$	40,750.00									
Manpower	\$	57,029.20									
Total	\$	244,810.70									
Schedule Time		5 Weeks									

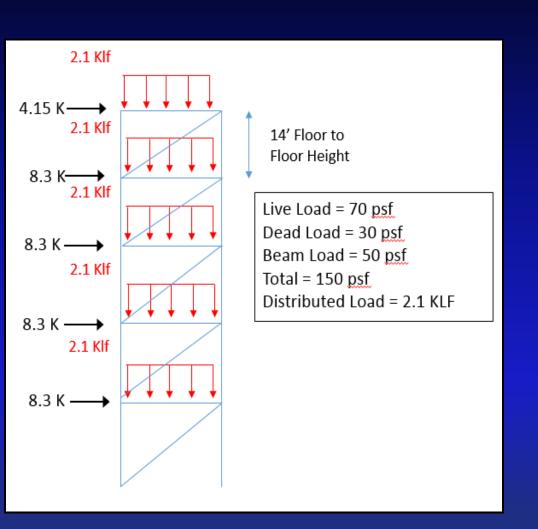


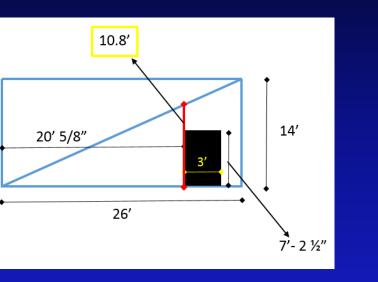




Structural Breadth Calculations







Bohlin Cywinski Jackson Architecture Planning Interior Design

Structural Breadth Calculations

	Steel Design Summary											
Size	Quantity	Length (ft)	Sum of Lengths	LB/LF	Lbs	Tons	Material Cost/LF	Labor Cost/ LF	Equipment Cost/LF	Total/LF	Cost/Ton	Total Cost
HSS 4-1/2 x 4-1/2 x 3/8	10	19.8	198	19.82	3924.36	1.96					\$ 3,000.00	\$ 5,886.54
HSS 6 x 6 x 1/4	10	29.5	295	19.02	5610.9	2.81					\$ 3,000.00	\$ 8,416.35
W14x90	8	28	224	90	20160	10.08	\$ 172.00	\$ 2.86	1.59	\$ 176.45		\$ 39,524.80
W14x90	4	14	56	90	5040	2.52	\$ 172.00	\$ 2.86	1.59	\$ 176.45		\$ 9,881.20
W10x30	10	26	260	30	7800	3.9	\$ 47.00	\$ 4.99	2.77	\$ 54.76		\$ 14,237.60
W10x17	10	14	140	17	2380	1.19	\$ 31.50	\$ 4.58	2.54	\$ 38.62		\$ 5,406.80
												\$ 69,050.40
											Add 10%	\$ 6,905.04
												\$ 75,955.44

Fireproofing														
Size	Quantity	Length (ft)	Sum of Lengths	Surface Length	Square Footage	Ma	terial	L	abor	Equipmen	ıt	Total	Inches	Total Cost
HSS 4-1/2 x 4-1/2 x 3/8	10	19.8	198	1.5	297	\$	0.53	\$	0.60	\$ 0.0	9	\$ 1.22	2.00	\$ 724.68
HSS 6 x 6 x 1/4	10	29.5	295	2	590	\$	0.53	\$	0.60	\$ 0.0	9	\$ 1.22	2.00	\$ 1,439.60
W14x90	8	28	224	4.8	1065.49	\$	0.53	\$	0.60	\$ 0.0	9	\$ 1.22	2.00	\$ 2,599.80
W14x90	4	14	56	4.8	266.37	\$	0.53	\$	0.60	\$ 0.0	9	\$ 1.22	2.00	\$ 649.95
W10x30	10	26	260	2.7	705.47	\$	0.53	\$	0.60	\$ 0.0	9	\$ 1.22	2.00	\$ 1,721.34
W10x17	10	14	140	2.4	329.47	\$	0.53	\$	0.60	\$ 0.0	9	\$ 1.22	2.00	\$ 803.90
													·	\$ 7,939.27

Appendix

	Material											
Description	Quantity	Unit	Material Unit Cost	Total Cost								
6" Studs @ 16" O.C.	400	LF	30	\$ 12,000.00								
/8" Drywall - Taped and Finsihed	11200	SF	1.52	\$ 17,024.00								
Joint Sealant	400	LF	0.3	\$ 120.00								
Sound Attenuation Blanket	4000	SF	0.44	\$ 1,760.00								
,				\$ 30,904.00								

	Labor			
Type of Manpower	Quantity	Unit	Cost per Unit	Total Cost
Carpenter & Taper	20	MD	357.04	\$ 7,143.02
Laborer	3.3	MD	273.12	\$ 910.68
Laborer (stocking)	11200	SF	0.05	\$ 560.00
	-			\$ 8,613.70

Daily Output/SF

Description

6" Studs @ 16" O.C.

5/8" Drywall - Taped and Finsihed

Joint Sealant

Sound Attenuation Blanket

Total SF Total Days

3253.8 4.34

400 11200

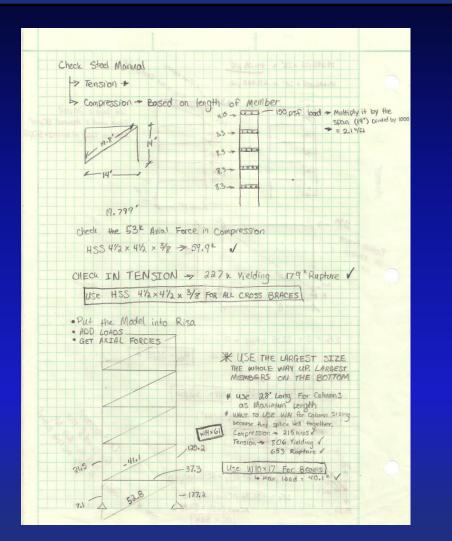
4000

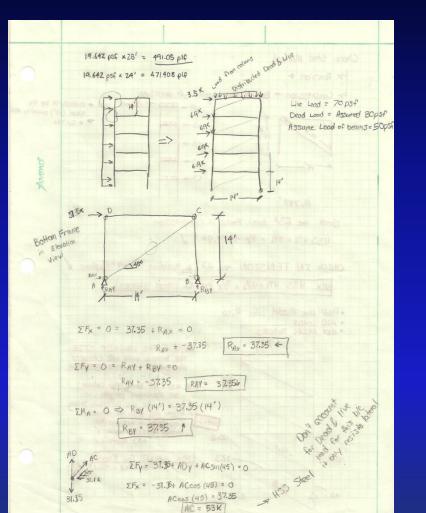
6" GWB Partition Material

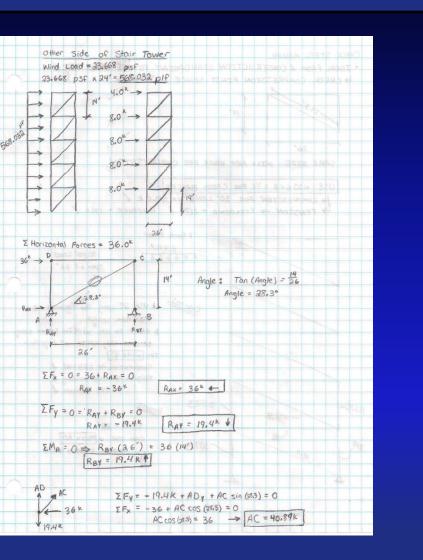
Production Rate Per day

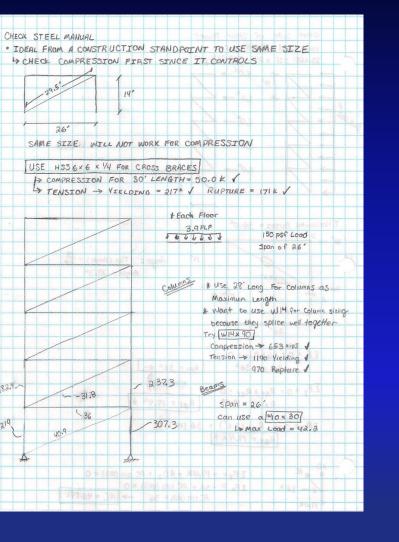
			Schedule				
			Steel Members	s			
Size	Quantity	Length (ft)	Sum of Lengths	Tons	Tons/Day	Daily Output/LF	Days
1/2 x 4-1/2 x 3/8	10	19.8	198	1.96	30		0.07
x 6 x 1/4	10	29.5	295	2.81	30		0.09
90	8	28	224	10.08		960	0.23
90	4	14	56	2.52		960	0.06
30	10	26	260	3.9		550	0.47
17	10	14	140	1.19		600	0.23
							1.16
Eiroproofing						_	

Unit Total Time Needed (Days)


11.61







Bohlin Cywinski Jackson Architecture Planning Interior Design

	RA Ductwork Takeoffs											
Size	Sum of the two sides	Max Dimension	Gage	lb/ft	Length (ft)	Pounds	SF	Cost/	pound	Cost		
18x12	30	18->30	24	6.5	3	19.50	13.86913	\$	8.50	\$	117.89	
28x8	36	28 -> 30	24	7.8	7	54.60	38.83357	\$	8.50	\$	330.09	
8X8	16	8->30	24	3.4	3	10.20	7.254623	\$	8.50	\$	61.66	
12X8	20	12 -> 30	24	4.3	7	30.10	21.40825	\$	8.50	\$	181.97	
16X6	22	16->30	24	4.7	2	9.40	6.685633	\$	8.50	\$	56.83	
20X8	28	20->30	24	6	10	60.00	42.67425	\$	8.50	\$	362.73	
14X10	24	14->30	24	5.2	31	161.20	114.6515	\$	8.50	\$	974.54	
		TOTALS				345.00	245.377			\$	2,085.70	

Items in the Ceiling	Does it need to be Plenum Rated?	Is it already Plenum Rated?
Steel	No	-
Electrical Conduit	Yes	Yes
Cables	Yes	Yes
SA Ductwork	Insulation needs wrapped	-
Sprinkler System	no	-

Appendix

		Supply Air Tak	eoff				
Size	Sum of the two sides	Max Dimension	Gage	lb/ft	Length (ft)	Pounds	SF
20x12	32	20> 30	24	6.9	14	98.3	85.1
10x10	20	10> 30	24	4.3	25	107.9	93.3
12x6	18	12> 30	24	3.9	16	63.7	55.1
18x12	30	18> 30	24	6.5	5	30.9	26.7
12x8	20	12> 30	24	4.3	33	142.6	123.4
8x8	16	8> 30	24	3.4	21	70.0	60.5
12x10	22	12> 30	24	4.7	10	45.8	39.6
							483.7

* Requirements say that the insulation wrap needs to be 1/2 inch thick									
According to Subcontractor	Cost per SF	SF	Total Cost	Minutes/SF	Minutes				
1" Vapor Barrier Wrap	1.96	484	\$ 948.10	0.15	73				

SCH	EDULE INFORMATION								
ABRI	CATION - 1 hr labor per 200 l	bs of sheetmetal							
	hrs total								
NUT	ES TO RAISE AND HANG ONE	RECTANGULAR PIEC	E OF E	DUCTV	VORK				
13	Pieces	15	minut	:es/pi	ece	195			
L5 M	INUTES OF INSTALL TIME FOR	S OF INSTALL TIME FOR EACH PIECE OF DUCT WHICH PENETRATES A WALL							
2	Pieces that Penetrate	15	15 minutes/piece			30			
UTE	TO SEAL 24 LINEAR INCHES C	F DUCT FLANGE BET	WEEN	PIECE	S				
13	Areas to sea	1	Minute/seal		13				
NUT	ES TO INSULATE 10 LINEAR FE	EET OF DUCTWORK							
63	LF	10	Minut	es/10	LF	63			
						404.5		6.7	Hours

Appendix

Blasting Estimate				
lasting	\$55,000.00			
re Blast Survey	\$20,000.00			
1onitors	\$ 6,000.00			
lasting Mats	\$ 6,000.00			
tone	\$ 1,000.00			
1obilization	\$ 7,000.00			
Total	\$95,000.00			

Manpower Takeoffs							
Type of Personnel	Hours/day	Number of days	Total Number of Hours	Cost	per Hour	-	Total Cost
ect Manager	2	14	28	\$	95.00	\$	2,660.00
Managers (3)	6	14	84	\$	85.00	\$	7,140.00
erintendent	2	14	28	\$	100.00	\$	2,800.00
or PM	2	14	28	\$	100.00	\$	2,800.00
rn (2)	4	14	56	\$	35.00	\$	1,960.00
ect Engineer (3)	6	14	84	\$	75.00	\$	6,300.00
_aborers (6)	12	14	168	\$	29.14	\$	4,895.52
glas Blaster In Charge	8	14	112	\$	45.19	\$	5,061.28
glas Personnel	8	14	112	\$	45.19	\$	5,061.28
ger Force (10)	45	14	630	\$	39.00	\$	24,570.00
vation Operators (2)	16	17	272	\$	43.04	\$	11,706.88
						ς .	74 954 96

Excavation Takeoff For Blasting					
needed to be Excavated	Cost/ CY	Total Cost			
7473	\$ 25.00	\$186,825.00			

Traditional Excavation Takeoff								
Assumed half unrippable material and half rippable because dolemite								
rock works like a sin graph								
Unrippable Soil								
Cost/CY Cost cy/day Day								
\$ 50.00	\$	186,825.00	315	12				
Rippable Soil								
Cost/Cy		Cost	CY/Day	Days				
25	\$	93,412.50	500	15				
-otal	\$	280,237.50		27				
Additional Costs								
General Conditions	\$	5,000.00						
Subtotal	\$	285,237.50						
Shoring Requirements	\$	400,000.00						
-otal	\$	685,237.50						